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DEFINITION OF SYMBOLS

crack size (particularly, maximum depth of a surface crack)
critical crack size
initial and final crack sizes

crack length below which initiation of ductile tearing will not occur during a proof
test

change in crack length (crack growth increment)

coefficients in (empirical) power-law description of material resistance curve
elastic area under the load-displacement curve

total area under the load-displacement curve

specimen thickness

half-length (on the surface) of a surface crack

empirical coefficient in a Paris Law description of fatigue crack growth, or general
constant in empirical models for material resistance curve proposed by Orange

equivalent compliance of a linear spring placed in series with a cracked body to
represent the elastic compliance of the total system

average crack growth rate per cycle of loading
Young’s (elastic) modulus
effective elastic modulus, equal to E for plane stress and E’/(1-v?) for plane strain

general constants in equations relating applied load to J or to load-line
displacement, representing various known functions of specimen geometry, crack
length, and material properties

coefficient in the plastic component of J (typically a function of the strain
hardening exponent)

value of the J-integral

applied value of the J-integral due to external loading

elastic component of J

critical value of the J-integral

maximum value of the J-integral

material resistance to crack growth expressed in terms of the J-integral

contribution to J from effective crack length (plastic zone) correction term

vii
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DEFINITION OF SYMBOLS (Continued)

range of the J-integral

linear clastic stress in;cnsity factor

apparent fracture toughness, or critical value of X for fracture
fracture toughness (rigorously, the plane strain fracture toughness)

linear elastic value of the stress intensity factor (special nomenclature for the
equivalent energy J estimation procedure)

maximum value of the applied stress intensity factor

plasticity-modified stress intensity factor in equivalent energy J estimation
procedure

range of the stress intensity factor

empirical exponent in a Paris Law description of fatigue crack growth
strain-hardening exponent in a Ramberg-Osgood constitutive relationship
number of loading cycles

residual fatigue life of a structural component (associated with crack sizes a;and
a, respectively)

applied load

in general, material resistance to stable crack growth; sometimes denoting a
constant in an empirical model for the material resistance curve which identifies
a particular value of material resistance

cyclic stress ratio, K /K ..
cyclic stress ratio corresponding to a given fatigue range marker band

specimen thickness, especially of a surface-cracked plate

general constant in empirical models for material resistance curve proposed by
Orange, identifying the asymptotic slope of the tearing portion of the curve

specimen width, especially of a surface-cracked plate
coefficient on stress term in Ramberg-Osgood constitutive equation
load-line displacement of a cracked body neglecting any system compliance.

total load-line displacement of a cracked body, including contributions from
system compliance
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DEFINITION OF SYMBOLS (Continued)

strain

strain constant in a Ramberg-Osgood constitutive equation
plastic strain

reference strain in CEGB J estimation procedure

mean value of a log-normal distribution

Poisson’s ratio

stress

stress constant in a Ramberg-Osgood constitutive equation, generally set equal
to the yield stress or flow stress

remote applied stress

critical stress for unstable fracture

applied stress in a proof test

residual strength of a structural component
reference stress in CEGB J estimation procedure
ultimate strength of a material

standard deviation of a log-normal distribution

yield strength of a material



CEGB
COD

EDM
EPRI
MCPT

PDF
SSME
SwRI

NONSTANDARD ABBREVIATIONS

Central Electricity Generating Board (United Kingdom)
Crack Opening Displacement

Compact Tension fracture mechanics specimen
Electro-Discharge Machining

Electric Power Research Institute

Multiple Cycle Proof Testing

Nondestructive Evaluation

Probability Distribution Function

Space Shuttle Main Engine

Southwest Research Institute



1. INTRODUCTION

Although proof testing is generally not the preferred method of crack detection, it has
proven useful as a supplement to conventional nondestructive evaluation (NDE) methods,
particularly when NDE is compromised by geometric complexities of the component, or
structure. The objective of proof testing is to screen out gross manufacturing or material
deficiencies and therefore provide additional quality assurance of delivered hardware. Itis
in this spirit that Rocketdyne has utilized proof testing on components of the Space Shuttle
Main Engine (SSME). In this case, Rocketdyne has applied a modified version of
conventional single-cycle proof testing which involves muiti-cycle proof testing (MCPT).
Typically, only pressure loads are applied during the proof test, and thus simulation of actual
pressure distributions in components with internal pressure gradients is only approximate.
Tocompensate for the fact that all service conditions are not simulated (for examnple, thermal
or mechanical loading), the operating pressure is generally scaled-up by a proof factor of
1.2. Proof testing typically occurs prior to service, but in special cases it is also utilized as
part of an in-service or recycle inspection. Based on demonstrated success on a number of
propulsion systems over the years, five-cycle proof testing has been adopted as a standard
practice by Rocketdyne.

Potential benefits of proof testing must always be weighed against the possibility of
inflicting additional undetected damage on the component through subcritical crack growth
or stable tearing upon loading. The decision as to whether or not to use proof testing for
the purpose of flaw screening, as well as the development of an optimum strategy for such
testing, requires appropriate fracture mechanics analysis. Since the application of proof
testing to brittle materials results in little or no stable crack growth on loading, multi-cycle
proof testing is unnecessary, and the relevant fracture mechanics analysis is relatively
straightforward. On the other hand, multi-cycle proof testing is generally applied to tougher
materials which often exhibit significant stable crack growth on loading, and the relevant
fracture mechanics analysis can be considerably more complex. Although these techniques
have been outlined [1,2,3], certain underlying concepts remain unproven and the appropriate
fracture mechanics material properties, needed to characterize the propensity for stable crack
growth, are generally not available.

The overall objective of this program is to assess the relative advantages and
disadvantages of single-cycle versus multi-cycle proof testing. Initially, consideration was
given to approaching this problem empirically. However, it became evident that because
of the many complications involved, such an approach would not provide a generally
applicable answer to the problem at hand. Thus, efforts were redirected towards the
formulation of an analytical model for MCPT which could be used to elucidate the interaction
of key variables--specifically, component crack size distribution, the character of the
material resistance curve, and elastic-plastic loading conditions. Selected experiments were
also conducted to explore the nature of surface crack growth in Inconel 718, as well as to
provide the material properties needed to implement the analytical model. For similar
reasons, information on the crack size distribution in SSME components, as well as in Inconel
718 castings and weldments was also compiled and statistically analyzed.



2. TECHNICAL BACKGROUND

The intent of this section is to outline relevant background information on MCPT and
to briefly describe concepts which are important to developing an understanding of MCPT,
as well as to formulating an analytical model for this process.

2.1 Rocketdyne Multi-cycle Proof Testing Experience

Multi-cycle proof testing of pressurized components has been selectively implemented
by Rocketdyne since 1952. Prior to that time, the more conventional practice of single-cycle
proof testing was employed. Multi-cycle proof testing originated as the result of component
failures on the NALAR program at pressures significantly less than the initial hydrostatic
proof. Failures were experienced as low as 46% of proof pressure. Although the failure
investigation did not explain the cause of the phenomenon, it was recommended that
five-cycle proof testing with 10-second hold times be incorporated to eliminate deficient
hardware. The current procedure for multi-cycle proof testing on the SSME consists of the
application of five proof cycles at a minimum pressure of 1.2 times the maximum operating
pressure, each with a minimum hold time of 30 seconds. The proof pressure is selected to
keep nominal stresses below 85% of the material’s ultimate strength as well as low enough
to preclude detrimental yielding, although localized yielding can sometimes occur.
Application of five-cycle proof testing at Rocketdyne has expanded to most production

programs.

Since the inception of the multi-cycle test, proof pressure testing has supported the
fact that component failures can be experienced on the second, third, fourth, or fifth cycles
at lower pressures than applied on the first cycle. These failures generally initiated from
undetected flaws in the component. This finding illustrates a potential deficiency in the
conventional single-cycle test and poses a challenge to determine optimum strategies for
proof testing.

The primary justification for five-cycle proof testing, in particular, is the successful
record of performance of Rocketdyne engines and the lack of service failures of pressurized
components whenever this procedure has been implemented. This experience includes those
cases where components have passed the first cycle of pressurization of a five-cycle proof
test only to fail on a subsequent proof pressure cycle at or below full pressure. As indicated
in Tables 1 and 2 [4], many of these cases, documented prior to 1979, involved components
of the SSME. In several cases the hardware deficiencies, revealed after having passed the
first proof pressure cycle, were judged to present a significant risk of component failure or
malfunction in service. This direct hardware experience is further evidence of the potential
benefit arising from the implementation of MCPT. As one might expect, the highest
incidence of proof test failures has occurred in components with the lowest design margin.



TABLE 1

SUMMARY OF FIVE-CYCLE PROOF TESTS (Pre-1979) FOR CASES IN WHICH
PRE-EXISTING DEFECT WAS IDENTIFIED

(Note: Does not include those instances where failure occurred on the 1st proof cycle)

Fallure Proof Pres. at
‘Component Material Cycle _ Failure

omponent
Thlcknass, in. |

Defect Informatlon
(dnmensnons in mches)

POTP Housing Tens-50 Castmg Defect
SSME Nozzle Mixer Bowl | Inconel 718 2,3 Leak --- Casting Porosity
SSME Turbine Disch. Inconel 718 2 56% ~.030 Weld Porosity
Duct Bellows Assy
SSME High Press. Fuel Duct| Ti5-2.5 4 (Cryo) 100% @ 5 Sec 133 L.D. Axial (HAZ)
SSME Fuel Turb. Drive Duct| Inconel 718 2 75% --- Cracks at Lugs
SSME Powerhead Preburner| Incoloy 903 5 100% 145 08 x 1.1 Non-
Fuel Supply Duct Metallic Inclusion
SSME Flight Nozzle Tubes | A-286 2,3,4,5 Various ~.010
12% 010 007 x .070
3 Examples 80% 0105 006 x .180
100% (12 sec hold) 010 007 x .060
F-1 Thrust Chamber| Inco X-750 3 61% 018 0057 x Long Lap
F-1 Tubes Tens-50 5 100% .600 .09 x .31 Inclusion
MK-10 Fuel Volute (Depressurization) (1% Permanent
Casting from Deformation
at Splitter Leading Edge)
RS-27 Turbopump Fuel 6061 Al 2 100% --- Vane Fillet Cracks
Inlet Elbow (4 Incidents)




TABLE 2

SUMMARY OF MULTI-CYCLE PROOF TESTS (Pre-1979) FOR CASES IN WHICH
PRE-EXISTING DEFECT COULD NOT BE POSITIVELY IDENTIFIED

(Note: Does not include instances where failure occurred on the 1st proof cycle)

[ S I T Failwre | %Prooirie T
Nalar

Component |

Helium Bottle 4130 Bar Numerous Down to 46% 071-.081
Post Proof
Thor Gas Generator 356-T6Al 5 78% —
Blade Valve HSG
Atlas MA-5 Turbine Inlet 300 Series 3 100% 1 —
Manifold Nut Cres
SSME Nozzle Tee Inconel 718 2 —- —
SSME HPFTP Bellows Assy - N/A 100% —
SSME HPOTP Bellows --- N/A 100% —
SSME Main Injector Inconel 718 2 100% -
SSME Oxid. Tank ' Inconel 718 2,4 100%
Pressurant
Short Bellows
SSME HPFTP Inlet Ti5-25 3 100% ---




Table 1 contains a summary of proof failures after the first cycle where a defect was
positively identified as the cause of failure. Where details were found identifying the
defect size, it can be seen that the defects were generally large compared to the thickness
and many times the thickness in length. This observation, coupled with the MK-10 volute
casting defect located in a high strain region, implies that significant local plastic
deformation may have occurred prior to failure. Therefore, even though proof limits are
selected so that the components remain nominally elastic, plastic deformation in the
uncracked ligament may have been a contributing factor to the multi-cycle proof failures.
Table 2 lists additional instances where proof failures occurred after the first cycle, but
identification of the cause of failure could not be related conclusively to a pre-existing
defect.

One immediate observation from Tables 1 and 2 is that multi-cycle proof failures were
notisolated to a particular material or material system, but were observed to occur in a broad
range of materials. It is also significant to note that many of the components listed contain
relatively thin sections. This observation is consistent with a propensity for thin sections
to exhibit stable crack growth on loading, as will be discussed later in terms of R-curve
behavior. Finally, the fact that the defect depth tended to be large compared to the thickness
may contribute to a loss of constraint for the normally highly constrained surface flaw which
might allow stable crack growth on loading to occur for that geometry.

22 Single Cycle Proof Testing Strategy

The philosophy underlying single cycle proof testing is well established; for example,
see the work of Tiffany [5]. Perhaps the most well known example of the successful
application of proof testing is that of the low temperature testing of the F-111 wing box at
McClellan Air Force Base [6].

As a prelude to understanding multi-cycle proof testing, let us first consider the basic
concept of single cycle proof testing of a material under brittle conditions. This can best
be accomplished by examining Figure 1 which illustrates conventional proof testing logic
in terms of both the residual strength (o) and the residual fatigue life (V,) of a structural
component. As indicated, the proof test stress (G,) is selected to be some fraction of the
material’s ultimate strength (G,,) such that gross deformation of the structure is avoided,
although local yielding may occur at geometric stress concentrations, or where large cracks
have significantly reduced the net section in a given region. Since brittle materials exhibit
a well-defined instability point given by K., = Ky, the successful application of G, guarantees
that any flaw that may be present is less than some size, a,. Using g, as the initial crack size
in a fracture mechanics based fatigue crack growth analysis defines a corresponding initial
residual fatigue life, N;. Provided periodic proof testing can reliably ensure that the maximum
crack size remains below a,, in-service proof testing offers the opportunity to extend the life
of the component. The interval (a, - a;) defines the crack size regime over which periodic
proof testing at 6, will result in crack detection through proof failures, thereby removing
the component from service before the critical flaw size, ay, is reached.

Although the foregoing discussion uses the term "brittle material”, it is important to
recognize that whether ornot a material exhibits brittle behavior is dependent upon geometric
constraint and loading rate, as well as test temperature. In fact, the temperature dependence
of the material can be used to advantage in designing the proof test. Specifically, for materials
in which K,/G,, is significantly reduced as temperature is decreased, G,/0,, can be reduced

5
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by performing the proof test at a temperature lower than the operating temperature. This
strategy was used in the case of the F-111 proof testing [6], and more recently in the case
of cryogenic proof testing of titanium disks in the Air Force’s F-100 engines in F-15 and
F-16 fighter aircraft.

2.3 Multi-Cycle Proof Testing and the R-Curve Concept

There is no advantage to multi-cycle proof testing in materials which behave in a brittle
fashion, since significant stable crack growth on loading does not occur. However,
multi-cycle proof testing appears to offer distinct advantages in materials which behave in
ductile fashion, as demonstrated by Rocketdyne’s experiences summarized in the previous
section. The apparent success of multi-cycle proof testing is believed to be due to the
occurrence of stable crack growth on loading. In general, this phenomenon is dependent
on a variety of factors--including stress state, temperature and material condition-- and can
best be understood in terms of resistance curve concepts.

The general concept of a resistance curve is artributable to Krafft [7] and involves an
energy balance between the driving force for crack growth and the inherent resistance to
crack growth of the material. Subsequently, McCabe and co-workers (e.g., see Ref. [8])
popularized the approach and developed standard methods for measuring R-Curves under
linear elastic conditions. The approach has also been shown to apply to cyclic loading
[9,10]; thus, its use is compatible with a conventional fracture mechanics approach to fatigue
crack growth. More recently, the resistance curve concept has been extended to fracture
under elastic-plastic loading [11,12] using the J-integral [13]. The latter has been formalized
by Paris and co-workers [14,15] into the tearing instability approach. Thus, the resistance
curve is a useful engineering concept which is applicable to a variety of failure modes and
loading conditions, including stable crack growth within highly deformed regions at
geometric stress concentrations [16]. However, for simplicity, the following discussion
relating resistance curve concepts and multi-cycle proof testing is presented within the
framework of linear elastic fracture mechanics. Elastic-plastic loading is considered in the
detailed model developed in Section 3.

As illustrated in Figure 2, the resistance curve concept can best be understood by
considering both the driving force (X) and material resistance (R)" as functions of the extent
of stable crack growth, Aa, which occurs during loading. Here the resistance curve, or
R-curve, is compared for two materials: the brittle material exhibits a relatively flat R-curve
(Ry), while that for the ductile material (Rp) rises steeply as the crack extends. The marked
increase in the R-curve in the latter case is believed to be associated with the formation of
shear lips near the surface of the specimen, reflecting the influence of a relative change in
crack-tip stress state from plane strain to plane stress as the specimen surface is approached.
The dashed lines emanating from a common point are the superimposed driving forces for
increasing values of applied nominal stress o, through o,. Although stable crack growth
can occur when K = R, the onset of crack instability does not occur until both: K = R and
9K/da = 9R/da. Because of the flatness of the R-curve in the case of the brittle material,

* Under linear elastic loading, the materials resistance is also commonly referred to as
Ky, but R will be used here for clarity.
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these conditions can only be met at point 7, for an applied stress 0,. Thus, G, is a critical
stress, designated o, and provided the extent of prior crack growth (Agg) is small, this
corresponds to K.

In contrast, for the case of ductile materials, instability occurs at point s, corresponding
to a critical stress 6.2, and toughness K.°. As a consequence of differences in the nature of
the R-curve, both the toughness and the extent of crack extension prior to instability can
differ significantly. Moreover, contrary to the case of the brittle material, the value of
apparent toughness for the ductile material is not unique, as will be discussed below.

For example, Figure 3 schematically shows how the character of the R-curve changes
as a function of specimen (or component) thickness. Consequently, even fora fixed material,
specimen geometry, and initial crack size, the toughness is seen to systematically increase
with decreasing thickness, B. Moreover, altering the planar geometry such that the applied
K varies, as shown in Figure 4, causes the toughness and extent of stable crack growth (Ag,
versus Ag,) to change significantly, even though the material and initial crack size are held
constant. Finally, even for a constant planar geometry, thickness, and material, the apparent
toughness (X,) can vary with initial crack size as a result of crack resistance development
during stable crack growth, as shown in Figure 5.

It follows from the above conditions that brittle materials have a straightforward proof
test logic, as summarized previously in Figure 1. In contrast, the propensity for stable crack
growth and more complex instability conditions of ductile materials give rise to the less
certain proof test logic of Figure 6. Here stable crack growth on loading (Aag), due to the
R-curve effect, produces uncertainty in the residual strength (80,), as well as in the residual
fatigue life (V).

In theory the above uncertainty can be eliminated through the proper application of
R-Curve concepts [1,3], although this has not yet been demonstrated quantitatively, nor have
the relevant R-curve data been generated, especially for surface and embedded defects.

Based on the above discussion, it is clear that the character of the material’s resistance
curve is important to MCPT behavior and holds the key to proper selection of an optimum
proof test strategy. Materials which are either inherently tough (Figure 2), or are used in
thin sections (Figure 3), are candidates for multi-cycle proof testing. Conversely, materials
with inherently low toughness, or those subjected to high degrees of geometric constraint,
are candidates for single-cycle proof testing. Since Inconel 718, the primary structural
material in the SSME, exhibits high toughness, it appears that component thickness and
flaw geometry would be the primary geometric variables influencing the development of
an optimum proof test strategy. This view is supported by Rocketdyne’s five-cycle proof
testing experience.

2.4 Potential Crack Growth Processes During MCPT

Crack growth can occur by several different mechanisms during a series of load-unload
cycles, as follows: 1) rupture mechanisms such as brittle cleavage or ductile tearing; 2) true
fatigue mechanisms associated with striation formation; and 3) interactions between rupture
and fatigue. Here we will consider only elastic-plastic (ductile) fracture conditions.
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2.4.1 Crack Growth by Ductile Tearing

Traditional ductile fracture experiments, and corresponding analyses, have been
developed to describe crack growth under monotonically increasing load or displacement.
It is unclear what happens upon unloading and then reloading during a period of ductile
tearing. Two extreme behaviors are possible, as well as a continuous range of intermediate
behaviors between these extremes.

At one extreme (call this Type A behavior), if the unloading does not cause
significant reversed plastic flow near the crack tip, the subsequent reload will be essentially
elastic. In this case, the unload/reload cycle will cause no further crack growth (assuming
that the reload is up to but not beyond the previous maximum load or displacement). An
example of this behavior is given by the partial (perhaps 10%) unload/reload excursions
used in single specimen J-R curve testing as a means of measuring elastic specimen
compliance and hence determining the crack length [17]. These unload/reload cycles are
specifically designed to have no effect on ongoing ductile tearing. If this behavior describes
the crack during a multi-cycle proof test, then no crack growth (by ductile tearing) would
occur at all on any proof cycle after the first. Several authors have reported Type A behavior
[18,19,20].

At the other extreme (call this Type B behavior), the unloading can cause
significant reversed plastic flow near the crack tip. In this case, the crack and the near-tip
stress-strain field are essentially "reset" and the subsequent reload cycle can be treated as
if it were the first loading cycle in a brand new test, where the present crack length is now
taken as the final crack length from the end of the previous cycle. In this case, there can be
appreciable crack growth on subsequent proof cycles, even if the maximum applied load or
displacement is the same. While Type B behavior has not previously been analyzed in
precisely this way, there is clear evidence in the literature of unloading effects which
contribute to significant crack extension on subsequent reload cycles. Brust er al. [21], for
example, report experiments and corresponding analysis using near-tip path-independent
integrals for two steels. They found re-initiation during reloading at roughly one-half of
the load prior to unloading (this was similar to the load level for initiation on the first loading
cycle) and attributed the effect to reversed plastic flow near the crack tip during unloading.
Marschall and Wilkowski [18] have also reported unload-reload tests with significant crack
growth during reloading. On the other hand, it must be noted that Brust [22] has very recently
observed Type A behavior in a similar numerical analysis of cracked 304 stainless steel
(with no explanation yet forwarded), and as noted in the previous paragraph, Marschall and
Wilkowski have observed Type A behavior many times as well.

At the present time there is no simple criterion to determine which type of
behavior will occur during unload/reload cycles or where along the continuum between the
two extremes the behavior is best described. It seems clear that the extent of the unloading
will be a major factor in determining the subsequent response: if the unload is only small
and the minimum load after the unload is still a large percentage of the previous maximum
load, then Type A behavior will occur; if the unload is extensive, especially to a large
compressive load, then Type B behavior seems likely. Thus, the nature of the boundary
conditions, and the stiffness of the loading system, will also have some effect. Specifically,
displacement-controlled situations which reverse back to zero displacement typically cause
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compressive reversed loads, while load control situations which reverse back to zero load
may leave a considerable unreversed plastic deformation (and of course there are
intermediate cases as well).

2.4.2 Crack Growth by Fatigue

On the other hand, crack growth can occur not by ductile tearing mechanisms
but by fatigue mechanisms associated with the load cycling. This is particularly the case
when the maximum applied load or displacement is relatively small, so that no tearing or
cleavage is initiated, and the number of load cycles is large; this is simply the classical
fatigue crack growth problem. But fatigue crack growth can also occur simultaneously with
ductile tearing. Again, this is generally most significant when the number of load/unload
cycles is large. A first estimate of crack extension attributable to fatigue mechanisms can
be made with the usual Paris Law representation of growth rates:

da_ ..\ (1)
E]V_C(AK)

where the empirical crack growth constants C and m are obtained from baseline tests under
linear elastic conditions. In the case of fatigue contributions to crack growth during ductile
tearing, considerable plastic deformation will be occurring and the linear elastic fracture
mechanics parameter K would cease to be meaningful. What is meaningful, at least in an
operational engineering sense, is the range of the elastic-plastic fracture mechanics
parameter /. Employing the relationship between K and J,

K’ @

where E’ = E for plane stress and E’ = E/(1 - v?) for plane strain, it is possible to compute
an equivalent AK value from AJ and use an extrapolation of the LEFM crack growth data
to predict an elastic-plastic fatigue crack growth rate. Several examples are available in the
literature in which linear elastic and elastic-plastic fatigue crack growth rate data were jointly
correlated by this type of analysis, including special attention to crack closure [23,24].

2.4.3 Combined Tearing and Fatigue Crack Growth

In practice, crack growth during large load/unload/reload cycles can occur
simultaneously by both tearing and fatigue mechanisms. One estimate of the total crack
extension can be made by simply summing the two independent contributions [25]):

3

da
(A3) 0t = (4 )ssaring + (E )fu av

This approach is typically used in conjunction with the assumption of Type A tearing
behavior. This implies that no further crack growth by ductile tearing occurs upon reloading
until the previous maximum load or displacement is exceeded (or until extensive fatigue
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crack growth has occurred). The ductile tearing that does occur is estimated by analyzing
the load-displacement behavior while totally neglecting the unload/reload cycle. This
approach further assumes that there is no true interaction between tearing and fatigue.

Another approach to a combined analysis of tearing and fatigue is to modify
the fatigue crack growth equation. The traditional Paris Law equation given above assumes
a simple power law relation between the applied stress intensity factor range (or its
elastic-plastic equivalent) and the crack growth rate. In other words, the logarithm of the
crack growth rate increases linearly with the logarithm of AK. In practice, however, it has
often been observed (for more brittle or more highly constrained materials) that when K,
approaches X, the crack growth rate can increase sharply. This has led to development of
alternative crack growth laws such as the Forman Equation [26],

da__ C@K)" 4
dN ™~ (1-RK,, —AK

where R is the cyclic stress ratio. For ductile materials with J as the controlling parameter,
this type of equation is not easy to implement, because there is not a uniquely defined critical
value of J for unstable fracture of a specimen or component. Nevertheless, analogous
equations can be developed [27]. Kobayashi et al. [28] suggest that the fatigue crack growth
rate will begin to increase sharply when J,,,, reaches J,..

An alternative viewpoint about the relationship between ductile tearing and
fatigue mechanisms assumes some equivalence in the two crack growth processes. Ratwani
and Wilhem [9] suggested that a single full range resistance curve for 2024-T3 aluminum
could be constructed to include both fatigue and fracture data. They considered only K-based
parameters (K and K,,,,), and the validity of this concept for J-based elastic-plastic fracture
analysis has not been confirmed.
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3. ANALYTICAL MODEL FOR MCPT

3.1 Model Formulation

As discussed in Section 2.4, one of the key considerations in formulating a model for
MCPT is how to represent the J-resistance curve for stable crack growth, as well as whether
or not to include subcritical crack growth from fatigue.

If we assume that ductile tearing behavior during unload/reload cycles is of Type A,
then we may have assumed a priori that multi-cycle proof testing is of no benefit. This
assumption is inconsistent with Rocketdyne proof testing experience, which is summarized
in Section 2.1. Furthermore, there appears to be sufficient evidence from the literature that
Type B behavior is possible, at least to some degree. Calculations of crack growth based
on Type B assumptions are expected to give an upper bound to the actual behavior. But
this is a useful calculation, and so for the purposes of this initial simulation of MCPT we
have assumed Type B ductile tearing behavior. The design and implementation of future
experiments will provide an assessment of this assumption. This information may also
provide the basis for developing more exact models, if necessary.

As discussed in the previous section, fatigue contributions to crack extension are also
possible. Based on extrapolation of the small-scale yielding fatigue crack growth data for
Inconel 718 (see Figure 27, Section 5.2), however, it appears that fatigue crack growth
increments may be relatively small unless J,,,, values are into the tearing regime. For these
larger J,,,, values, the J-resistance curve seems to be the preferred means of characterizing
crack growth, especially in view of uncertainties about fatigue crack growth acceleration in
thisregime. Inview of these reasons, the analysis described in this report focused exclusively
onaJ-R approach to crack extension. Such an approach also served to simplify the analytical
scheme and to bring about at least a small reduction in the complexity of these preliminary
assessments. The potential significance of fatigue crack growth to this problem will be
examined in more detail in subsequent investigations.

Based on the above view of stable crack growth, a computer code was written which
numerically simulates multi-cycle proof testing under a variety of conditions. The code,
written in standard FORTRAN-77, was assembled and exercised on an Apollo workstation:
Several specialized post-processing graphics routines were also developed.

The code essentially conducts quantitative cornparisons of the material resistance curve
and the applied J curve (J,,,) by a suitable overlaying of the two curves. Appropriate logic
is employed on each simulated proof cycle to locate the resistance curve relative to the initial
crack length and to identify the intersection of the R-curve with the J,-curve. The code
checks for non-initiation or failure on that cycle and then (if necessary) calculates the extent
of stable crack growth. The complex non-linear form of both curves requires the frequent
use of iterative numerical schemes to invert equations or locate points of intersection, and
therefore a high premium was placed on computational efficiency in developing the code.

The material resistance curve in the code can be quantified by any one of several simple
models developed by Orange [29]. These are all empirical equations which have no direct
physical basis, but which have been demonstrated to provide satisfactory fits to experimental
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data. Five different models are available in the code, and the user has the freedom to select
the one which best describes his material-geometry system. These models include an
exponential form,

Je =R +TAa)[1 -exp(—Aa/C))] (5)
a hyperbolic form,
I = (R+TAa)Aa (6)
R C+ma
an arctangent form,
Jr = (R + TAa) (2/m)arctan(nAa/2C) )]
a hyperbolic tangent form,
Jr = (R +TAa)tanh(Aa/C) (8)
and a power law form,
Jy=A,Aa)" ©)

In all of these equations, Ag is the increment of crack advance. In the first four equations,
T represents the asymptotic slope of the tearing line, R the intercept of the tearing line with
the A = 0 axis, and C the A value on the asymptotic blunting line which corresponds to J,
= R. See Figure 7. In the power law equation, A, and A, are general empirical constants.
The specific values of all these constants are dependent not only on the resistance data but
also on the specific empirical equation chosen. The choice of a specific model, and specific
model constants, involves a simple non-linear least squares regression of available
experimental data. Independent of the model and constants chosen, the user also has the
freedom to specify a value for J,, the J value below which crack initiation (and therefore
tearing) will not occur.

The J,,, values are computed as a function of the material’s constitutive properties,
crack length and other specimen dimensions, and boundary condition -- either applied load
ordisplacement. A different setof/,,, equations is required for each specimen or component
geometry. Equations for many cracked geometries are readily available in the Electric Power
Research Institute (EPRI) elastic-plastic handbook [30], and estimation schemes are
available for other geometries.

A key distinction is made between load-controlled and displacement-controlled
configurations, and this difference has important implications for both the numerical
calculation of J,,, and the fundamental evaluation of multi-cycle proof testing. When the
component or specimen is under pure load control with applied load P, J can be directly
evaluated according to the general form:
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FIGURE 7. Schematic representation of elastic-plastic R-curves
(adapted from Orange [29]).
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J=FP*+FpP** (10)

where F; and F, are known functions of specimen geometry, crack length, and material
properties, and n is the strain-hardening exponent in a Ramberg-Osgood constitutive
relationship. In this case, J increases monotonically with both load and crack length,
sometimes quite sharply. When pure displacement control is applied with some total
maximum displacement A, it is first necessary to determine the induced load by inverting a
compliance equation of the general form:

A=F,P +F " (11)

(where F; and F, are analogous but not identical to F, and F,) and then substitute the
calculated load into the previous equation in order to obtain Jopp- Under pure (crack-mouth)
displacement control, the J,, typically decreases with increasing crack length because of
increases in the compliance, and corresponding decreases in the induced load.

In reality, many components and specimens are neither purely load-controlled or
purely displacement-controlled, but exhibit some combination of load and displacement
control. This may be described mathematically by assuming control based on total
displacement A; where

Ar=A+C, P (12)

Here Cy, is the compliance of a linear spring placed in series with the cracked body and
represents the elastic compliance of the total system. The condition Cy = °o corresponds to
pure load control, and the condition C,, = 0 corresponds to pure displacement control.
Intermediate values of C,, correspond to intermediate control configurations. For example,
if a specimen is tested in displacement control with a very long gage length, the value of
Cy may be related to the elastic compliance of the uncracked, load-bearing ends of the
specimen between the crack and the gage point. Under combined control, the applied J
value can either increase or decrease with crack length, depending on the choice of
parameters in Egs. 10 through 12. These different control conditions, and their influence
on ductile crack growth during multi-cycle proof testing, will be illustrated and discussed
in more detail in the following section.

The present computer code permits three different analysis schemes, each with
appropriate graphical output. The first scheme simulates a single MCPT based on a single
initial crack length and generates a complete graphical record of the Jopp Curve and the J-R
curve, appropriately located for each proof cycle. The second scheme surveys a wide range
of equally spaced initial crack lengths and identifies the corresponding final crack length
after a given number of proof cycles, including the limiting crack lengths below which no
growth occurs and above which catastrophic failure occurs during any of the proof cycles.
The third scheme is a full Monte Carlo simulation which samples a given distribution of
initial crack lengths and computes the corresponding distribution of final crack lengths. This
scheme also admits the possibility of a statistically describable variation in any other input
variable, such as changes in the J-R curve.
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The heart of the computer code, including its many options, has been extensively
validated by comparison to single-cycle fracture analyses given in the EPRI elastic-plastic
fracture handbook [30]. Particular attention has been given to analysis of a compact-tension
(CT) specimen of A533B steel under several different control conditions. Because this
geometry-material system is well-understood and well-behaved, it also serves as a useful
vehicle to illustrate many of the basic phenomena associated with MCPT.

3.2 MCPT Simulations with Thru-Thickness Cracks
3.2.1 MCPT Under Load Control Versus Displacement Control .

A multi-cycle proof test for a CT specimen under pure load control is illustrated
in Figure 8. The single J,, curve corresponds to the given maximum proof load, which is
the same on each proof cycle. The five R-curves represent five different proof cycles, each
curve emanating from the appropriate “initial" crack length at the beginning of the
corresponding proof cycle. Each new "initial" crack length is determined by the intersection
of the applied J curve with the resistance curve for the previous proof cycle. For example,
the crack length at the beginning of the entire test is 4.615 inches. The intersection of the
J , curve with the R-curve originating at @ = 4.615 identifies the amount of stable growth
during the first proof cycle and therefore the crack length at the end of the first proof cycle,
a = 4.636. This "final" crack length then serves as the "initial” crack length for the next
proof cycle, identifying the new origin for the R-curve. In this particular multi-cycle proof
test, failure occurs on the fifth proof cycle because for that initial crack length, the crack
driving force exceeds the available material resistance, before the maximum proof load is

attained, and 9J,,,/0a > 0Jy/da.

This specific example points out several general features of a load-controlled
MCPT. First, note that the amount of crack growth is increasing with each additional proof
cycle. Second, failure on the last proof cycle can occur at a load which is significantly
lower than the proof load. Remember that the J,,, curve shown is for the maximum load.
Applied J curves for lower loads will lie below the curve shown. Failure will occur
immediately above the load for which the J,,, curve is just tangent to the last R-curve. Third,
note that the extent of crack growth on each cycle and the number of proof cycles to failure
will depend on a great many variables, including the proof load, the shape of the R-curve,
and the initial crack length.

A MCPT under pure displacement control (Cy =0) is shown in Figure 9. Here
the J,,, value decreases slowly and nearly linearly with crack length, and no failure occurs
on any of the five proof cycles. This will be the general rule for any pure displacement
control test: catastrophic fracture of the specimen or component will not occur, but the
load-carrying capability of the structure may be seriously degraded.” The crack growth
increments are successively smaller on each proof cycle, but in this case the total crack
growth per cycle is relatively large, especially in comparison to the previous load-controlled
MCPT simulation. The specific amount of crack growth during any load-controlled or

»* In addition, it should also be noted that while this type of loading facilitates a
Jeak-before-break condition, this situation may be catastrophic in components where an
explosion of volatile fluids is likely.
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FIGURE 8. Example of a simulated multi-cycle proof test under load control.
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FIGURE 9. Example of a simulated multi-cycle proof test under displacement control.
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displacement-controlled MCPT, of course, is a function of the specific applied loads or
displacements. In general, however, displacement-controlled tests do possess a greater
potential for extensive stable crack growth than load-controlled tests.

Intermediate control conditions can cause several different MCPT behaviors;
two examples are shown in Figure 10. In the top figure, the Jopp Curve for the crack lengths
of interest is similar to that for pure load control. However, the increase in Jpp With crack
length is less pronounced than for load control, and therefore the extent of stable crack
growth is greater. Note that in this particular case, failure occurs on the fourth proof cycle.
A very different type of MCPT phenomenon is illustrated in the bottom graph. For this
particular case of intermediate control, the general character of the entire Jop CUrve is evident:
a gradual increase in J with crack length to some maximum value, followed by a gradual
decrease. (Actually, the Jop curve for pure displacement control exhibits both increasing
and decreasing regions, but the increasing region is limited to very short crack lengths.) If
the R curve intersects the Jopp Curve in the rising region, the MCPT behavior will be similar
to a load control test, as in the top figure. If the R-curve intersects the Jupp Curve in the
decreasing region, the MCPT will follow the general trends of a displacement control test.
In this particular case, the MCPT encompasses both attributes of the J o Curve. With small
variations in the initial crack length, applied displacement, or system compliance, a flawed
structure of this type undergoing MCPT may fail during proof testing, experience large
stable crack growth without any possibility of failure, or not even initiate a tearing crack.
Thus, in theory the precise response to MCPT will be specific to component details.

3.2.2 Changes in Crack Size Distribution During MCPT

Theeffect of MCPT on a population of initial defects was evaluated usin g Monte
Carlo simulation. The particular Monte Carlo scheme employed here has thus far only
considered variations in the initial flaw size. All other input variables are taken as
deterministic. It should be noted that other variables (such as the R-curve or the system
compliance) also exhibit some randomness/uncertainty, and this may need to be considered
in order to make a comprehensive evaluation of the MCPT scheme.

The Monte Carlo algorithm randomly selects an initial crack length from a
user-defined probabilistic distribution. The code then conducts a simulated MCPT on this
sample, noting whether the crack failed to begin tearing, grew to final fracture, or simply
grew to some larger crack size. The code then collects all final crack lengths for the unfailed
samples and displays frequency distributions for both initial and final crack lengths. The
graphs presented here are not true probability distribution functions (PDF), but rather are
histograms. The total range of crack lengths is divided into a large number of equally spaced
bins, the actual crack lengths are sorted into the bins for counting, and then the graph is
constructed by locating each bin total (the number of cracks in each bin range) at the crack
length corresponding to the midpoint of each bin. This is a reasonable and efficient
approximation of the true PDF, but may lack certain fine detail.

Typical results for a five-cycle proof test in intermediate control (tending
towards load control) are shown in Figure 11. This figure may be better interpreted by
referring to the schematic representation in Figure 12. Under these particular conditions,
all cracks shorter than g, do not initiate (Jupp ON the first cycle is less than J,), and so all
cracks in Region 1 remain unchanged in length throughout the MCPT. All cracks longer
than a,, will grow to failure on one of the five proof cycles, and hence none of the cracks

24



B
20
&
£
a
x
S
3
9 +—r+————---+t-—F—r— T
4.4 4.6 4.8 5.0 5.2 5.4
Crack Length {in.)
%
€
a
x
&
3

Crack Length (in.)

FIGURE 10. Examples of simulated multi-cycle proof tests under intermediate control.

25



2000

Frequency

Crack Length (in.)

FIGURE 11. Initial (solid line) and final (dashed line) crack length distributions for
simulated five cycle proof tests.

26



Lz

ath acr

Initial Crack Length Final Crack Length
(Before Proof Testing) (After Proof Testing)

FIGURE 12. Schematic representation of initial and final crack length distributions for MCPT.



initially in Region 3 appear in the distribution of final crack lengths. The cracks in Region
2 will experience stable crack growth, but will not grow to fracture. The total areas of
Region 2 in the initial and final flaw distributions are the same (i.e., both represent the same
number of cracks). Note that there is actually a "gap" in the final flaw distribution (which
in Figure 11 is partially obscured by the bin sorting operation) because flaws exactly equal
to a; are prevented from growing at all, while flaws slightly greater than q,, grow by some
finite amount. This gap goes away as J,, approaches zero, but a non-zero J}. 1s supported
by experimental evidence. Remember, also, that the present analysis considers only crack
growth by ductile tearing and not by traditional fatigue, or sustained load mechanisms. This
analysis assumes that cracks which never see a J greater than J,_ will never grow, although
a fatigue analysis would predict some (generally quite small in comparison) average crack
advance on every cycle (if the fatigue threshold is exceeded).

Figure 13 illustrates MCPT results for the same conditions as Figure 11, but
with different numbers of proof cycles. In this case, the advantage of multiple proof cycles
is clearly evident. While the largest remaining crack length in the population does not
change with further proof cycling, the population of cracks longer than a, does decrease
with larger numbers of proof cycles. The same general effect is evident in Figure 14, which
uses initial flaw distribution types more typical of actual hardware (that is, log-normal
distributions heavily skewed towards shorter flaws). In this case, by the end of 10 proof
cycles almost all cracks longer than a, have been removed from the population. On the
other hand, it should be noted that in some cases very little benefit appears to be realized
by further proof cycling beyond a single cycle. It should be obvious by now that a great
many variables influence the outcome of MCPT, and it is not yet possible to suggest a simple
rule of thumb about when MCPT is good or bad. Some general trends do, however, appear
evident.

One such general trend is that MCPT under pure, or nearly pure, displacement
control is not desirable. This fact is illustrated in a striking way in Figure 15. In this case,
no cracks have been removed from the population but all cracks have experienced significant
stable growth. The same conclusion would apply to intermediate control configurations
where the R-curve intersects the Joep Curve in the falling region as in Figure 10.

Monte Carlo simulation of MCPT for intermediate control cases has just be gun
(numerically this is quite complex because of the complex shapes of both Jopp and R-curves,
and the probability of multiple intersections), but it is obvious that several different outcomes
are possible. Identification of the actual control boundary conditions in real components
will be particularly crucial to the final evaluation of MCPT.

3.3 J Estimates for Surface Cracks

These numerical experiments have been conducted on reference geometries and
materials in order to validate the code and illustrate the fundamental physical phenomena.
The ultimate concemn, however, is to make some judgements about specific flaw shapes,
flaw sizes, material properties, and applied loads which are representative of SSME
hardware. Unfortunately, some of these requirements add new uncertainties to the analysis
and require further development work. Initial efforts to identify the governing equations
and input properties which are specific to the SSME application are briefly described below.
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FIGURE 13. Initial and final crack length distributions for simulated proof tests with
(a) one and (b) two proof cycles. Simulation parameters are otherwise the same
as for the five-cycle proof test illustrated in Fig. 11.
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J-integral estimation schemes for compact tension specimens, edge-cracked plates,
and many other "standard" specimen geometries are immediately available in the EPRI
elastic-plastic handbook. Closed-form estimates for surface or embedded cracks in finite
thickness plates or shells are not readily available. A limited number of finite element results
for specific crack and specimen geometries and materials have been published, but these
have not yet led to generalized analytical expressions.

An alternative approach to J estimation is the reference stress approach developed by
the Central Electricity Generating Board (CEGB) of the United Kingdom [31]. This
technique requires only three basic pieces of information: 1) a complete solution for the
linear elastic stress intensity factor K; 2) a description of the elastic-plastic constitutive
material response (which does not have to be of the Ramberg-Osgood form); and 3) an
estimate of the plastic collapse limit load for the cracked member, assuming an
elastic-perfectly plastic material. All three of these are available for the surface cracked
plate and the Inconel 718 material. A remaining ambiguity for the surface cracked plate is
whether the limit load should represent the local limit load for break-through to the back
surface or the global limit load for failure of the entire plate. Investigations by Miller of
the CEGB ([32] suggest that the global limit load provides better J estimates, and his
comparisons of reference stress estimates with the limited number of “exact" solutions
available at that time found the estimate to be acceptable.

We have made further comparisons of the reference stress estimates for surface cracks
in finite thickness elastic-plastic plates with recent finite element results published by Parks
and Wang [33]. These comparisons are summarized in Figure 16, where J is normalized
by Go€of and the applied stress is normalized as 6._/0,. The material constants G, and g, are
based on a Ramberg-Osgood description of the elastic-plastic constitutive relationship
(which was used by Parks and Wang),

E O a( c ) (13)
—_—_— —
& O Co
The general form of the reference stress estimate for J used here is given by the expression
J=x2l 1 S [ O | 14)
Lo J0) 2 L E E,¢

This equation includes an effective crack length term to approximately account for plasticity
in the intermediate small-scale yielding regime [34]. The reference stress for a
surface-cracked plate is calculated as

.. (15)
O =12 (ra?)/(2tw)

where ¢ and w are the thickness and width of the specimen and 6., is the nominal applied
stress. The reference strain €, is calculated from the constitutive relationship as the uniaxial
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strain corresponding to G,,.. The linear elastic stress intensity factor K is calculated from

the expressions of Newman and Raju [35]. The reference stress J estimate appears to be
significantly low for both crack shapes.

Dowling [36] has previously studied J estimates for semi-circular flaws in infinite
bodies. He derived an equation of the general form
K? ,{1 J E’G(G/Go)"} (16)

J=—"11+2

E J, E olo,

Here J,/J, is an effective crack length (plastic zone) correction term and A, is a function of
the strain hardening exponent. Dowling found an equation of this form to give very similar
results to the elastic-plastic finite element analysis of Trantina et al. [37].

For infinite bodies, the reference stress is equal to the applied stress, and so we may
rewrite the previous equation (for plane stress) as:

Fs 6 E an
J"'E_{“J.”“’(E' J}

Ignoring for the moment the effective crack length term J,/J,, this equation differs from the
basic CEGB reference stress equation only by the h, factor, which the CEGB estimate for
an infinite body would take to be equal to 1. An arbitrary modification to the reference
stress J estimate can then be made by applying this last equation to the general case of a
finite body, where the reference stress and strain will be higher than the nominal applied
values. These new estimates are compared with the Parks and Wang results in Figure 17,
and they are clearly much improved. These results are promising, although further study
is needed to confirm this modified estimation procedure.

Consideration of displacement control or intermediate control configurations requires
not only estimates for J as a function of load but also total displacement as a function of
load and system compliance. Again, this is not readily available for the case of surface
flaws. McCabe [38] has recently proposed equations (developed by Newman and Raju) for
the elastic component of displacement, and he has also proposed an algorithm by which
experimental results can be used to calibrate a plastic displacement relationship of general
form. Further studies are underway to determine if SwRI data can be used to construct these
equations.

3.4 MCPT Simulations with Surface Cracks

Preliminary assessments of multi-cycle proof testing for SSME applications were
conducted using the computer code described above in Section 3.1. The necessary J
estimation scheme for surface flaws was described in Section 3.3. Also required as input
are information about initial crack size distributions, discussed in Section 4, and material
properties and a resistance curve for surface flaws in IN-718, both of which are discussed
in Section 5.4.
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Two different representations of the resistance curve were investigated. The
development of the experimental data and empirical models for the R-curve is discussed in
more detail in Section 5.4, and is only summarized briefly here. One surface crack R-curve
model was chosen to have the same initial and tearing slopes as a resistance curve for IN-718
based on compact tension specimens, but with the intercept of the tearing line (parameter
R, Figure 7) increased by 3x. The second representation was a unique power-law fit to the
surface crack J - Aa data, with J estimates based on the modified reference stress technique.
The original data and the two fitted curves are shown together with Figure 18.

A Monte Carlo simulation of multi-cycle proof testing for the surface crack
configuration used by SwRI is illustrated in Figure 19. This particular simulation used the
power-law J-R curve. The control parameter was maximum load and the proof stress was
roughly equal to the flow stress (180 ksi). The section thickness was 0.2 in. Five proof
cycles were applied. Most of the cracks in the initial distribution are small and in this case,
those small cracks do not grow appreciably. The larger cracks do grow noticeably but the
net change in the crack length distribution is relatively small. See Figure 20, for example,
where simulations of individual proof tests are shown. When the initial crack length is 0.06
in., the crack length is predicted to increase by about 0.005 in. after five proof cycles. When
the initial crack length is 0.08 in., about 0.020 in. of total crack growth is predicted.

For this particular test configuration, the crack lengths of greatest interest are well into
the tail of the distribution. Further simulations were conducted which focused on these
longer initial crack lengths, as shown in Figure 21. Note here that only the right-hand tail
of the distribution is shown. The top graph shows initial and final crack length distributions
for five cycle proof testing with the same parameters described above. Here it is clear that
proof testing removes from the population only cracks longer than 0.112 in. The frequency
of cracks longer than about 0.07 in. decreases slightly after MCPT, and the frequency of
cracks shorter than 0.07 in. is essentially unchanged. Compare these results with the bottom
graph, which shows initial and final distributions for single cycle proof testing. The
frequency of cracks having lengths greater than 0.085 in. decreases somewhat, but the change
is less than for five cycle proof testing. The final maximum crack length is unchanged. One
might conclude in this particular case that MCPT is superior but only marginally so.

Further studies are needed to examine a wider range of input parameters which are
relevant to SSME proof testing. Attention must be given to displacement-controlled
configurations, the exact form of the resistance curve, and other representative values of
initial crack sizes and shapes, section thickness, and applied load. The material appears to
be of sufficient toughness, however, that only extremely large cracks (perhaps deeper than
half the section thickness) will be removed from the population during proof testing at large
applied stresses. Lower applied proof stresses leave much longer cracks in the structure
after testing. An applied maximum stress of 170 ksi, for example, is predicted to leave a
maximum flaw depth of 0.136 in. for a section thickness of 0.2 in. Applied stresses much
lower than the yield stress will cause negligible growth of all but the most severe defects
under these conditions.
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4. CRACK SIZE DISTRIBUTION FOR INCONEL 718
CASTINGS AND WELDMENTS

In order to model actual proof tests on SSME components, it is necessary to define
relevant distributions of crack sizes and shapes. Data relative to initial defect sizes for SSME
hardware or fabrication processes were collected at Rocketdyne. The data sources include
material test coupons, selected SSME hardware, and available multi-cycle proof failure
information.

From the initial defect size data, statistical distributions were defined to model the
defect shape and size. Knowledge of these distributions will assist in choosing defect sizes
for future laboratory proof testing experiments. Figure 22 is a frequency distribution of
crack depth, a, and Figure 23 is a distribution of surface crack length 2¢. From these data,
it can be seen that the largest concentration of crack depths are less than 0.02 in., while the
crack lengths are less than 0.05 in. The frequency distribution of crack shapes, a/2c, is
plotted in Figure 24. As expected, the predominant crack shape is semicircular (a/2¢ =0.5).
This crack shape is typical for predominantly tensile loading in this material, and the
consistency of this shape as the crack grows will be verified during the experimental studies
discussed next.

Figure 25 is a plot of the effect of crack depth on crack shape. While the first three
plots fit well into either a Weibull or log-normal distribution, a correlation of the crack shape
with size is less clearly defined, as seen in Figure 25. Almost all of the outliers in this figure
(af2¢ > 2) come from the electron beam welding (EBW) microfissure data. Not taking these
data points into account yields a much more consistent crack shape to size correlation. While
these flaw size distributions may provide the best simulation of actual flaw sizes in the
SSME, decisions will still need to be made as to which flaw sizes will be used in the
experimental proof testing to best verify the analytical results.

The Rocketdyne data on distributions of initial crack depth, @, were analyzed to
determine the best statistical description. The Kolmogorov-Smirnov test was used to
evaluate several different mathematical models, and the log-normal distribution with a mean
value i, =0.0212 in. and a standard deviation o, = 0.0203 in. was determined to be the best
description of the data (see Figure 22).
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5. FRACTURE MECHANICS PROPERTIES OF INCONEL 718

5.1 Material Characterization

Due to its wide application in SSME .components, Inconel 718, a precipitation
hardenable, nickel-base superalloy, was chosen for the experimental tests. Age hardening
in this alloy is achieved through precipitation of a columbium-rich intermetallic phase which
results in good corrosion and oxidation resistance, as well as good mechanical properties,
which permit its use to temperatures of 1200°F.

Although most cracks in Inconel 718 components of interest to the SSME originate
at welds, the current program examined base metal. This decision was made so as not to
confuse the issue by the complexities associated with tests involving weldments--such as
residual stress, out of plane cracking, and crack branching.

To ensure that the results generated were applicable to SSME components, the test
material was purchased according to Rockwell Specification RB0170-153. The Inconel
718 was machined into "dog boned round" center cracked tension specimens, shown in
Figure 26, and then heat treated by United Heat Treating Company according to the
following procedures:

1) Rack parts to minimize warpage

2) Vacuum solution treat at 1900°F for 10-30 minutes
3) Argon back fill cool to room temperature

4) Age in vacuum at 1400°F for 10 hrs.

5) Furnace cool to 1200°F and hold for a total time
(1400°F plus furnace cool plus hold time at 1200°F)
of 20 hours

6) Argon back fill cool to room temperature

This particular heat treatment is used in SSME components to achieve optimum resistance
to hydrogen embrittlement.

The chemical composition of the Inconel 718 material used is given in Table 3, and -
the basic mechanical properties are given in Table 4. These tensile tests results are in
conformance with the RB0170-153 specifications.
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5.2 Fatigue Crack Growth Rates

Fatigue crack growth rate tests were conducted on through-thickness cracked panels
to determine both baseline fatigue data and information regarding fatigue range marking.
This technique is based on the fact that the topography of the fatigue fracture surface is
altered with changes in loading variables. The cyclic stress ratio R® = K;,,/K ... and AK can
be changed to place a coarse mark on a fine surface, or vice versa, leaving a dark band on
the fracture surface. The production of a well-defined range mark depends on prior
knowledge of the fracture surface appearance. The crack growth rates correlated with the
fracture surface morphology were used to select loading levels for the range marking
necessary for the crack shape studies. Metallic materials exhibit a general fracture
morphology trend of coarse-to-fine-to-coarse that occurs with transitions at crack growth
rates of about 5 x 107 and 5 x 10 in./cycle, respectively.

Figure 27 provides a summary of the resulting crack growth rate data (da/dN) plotted
as a function of the crack-tip stress intensity factor range (AK) for three specimens. Two
tests were run on (.2 in. thick specimens to provide data over a wide range of growth rates.
As indicated by the figure, the data obey a power law above AK = 10 ksiVin., with good
agreement in the mid-range where results from the two specimens overlap. The third test
was conducted on a 0.5 in. thick specimen. Results from the two thicknesses are in excellent
agreement, except in the region near AK = 65 ksiVin. The deviation in this region is believed
to be due to the occurrence of noticeable crack branching in the 0.2 in. thick specimen,
which apparently resulted in retardation of the growth rates in this specimen.

Visual examination of the fracture surfaces of the above experiments revealed
significant differences in the fracture surface morphology at high and low growth rates.
This observation provides verification that range marking can be successfully employed to
mark crack extension in the following experiments on surface-cracked specimens.

5.3 Surface Crack Shape

Crack-shape studies were conducted to determine the shape of the crack as it grows.
Fatigue range marking bands were used to both verify changes in the crack shape and monitor
the crack growth during the R-curve determination.

All specimens are first polished down to a 1 micron diamond polish to provide easy
viewing of the crack during the test. Electro-discharge machining (EDM) slots were
introduced into the surface of the specimens to provide a starter for the crack. The slot sizes
for the 0.2 in. thick specimens were 0.05 in. deep by 0.100 in. long and in the 0.5 in. thick
specimens they were 0.125 in. deep by 0.25 in. long. Prior to the precracking, the specimens
were prepared with photographic grids, having 0.010 in. spacing, to provide reference lines
for the visual crack length measurements. Three specimens were then precracked and tested
under fatigue loading at a stress ratio of 0.1 using a closed-loop, servo-hydraulic testing
machine.

Crack shape study experiments were conducted on surface flawed 0.2 in. thick
specimens. Crack opening displacement (COD) was measured with a clip gage, having 0.2
in. gage length, positioned on diamond indentions located just above and below the EDM
flaw. The shape of the growing crack was periodically marked using fatigue range marking.
On the first attempt at range marking, fine marks were applied to the fracture surface. When
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the specimen was broken open, these marks were indistinct, indicating that a coarser marking
was necessary. For the second attempt, a coarse-on-fine scheme was employed to produce

the marker band. The stress ratio chosen to produce a marker band (R;) was estimated from
the following empirical relationship:

(da/dN)Rgf(Ra{l)—{ 1 - R:gf}Z (18)

(da/dN Ymar: 1-R?

where da/dN(mark) was chosen to be 1 x 107 in/cycle and R was determined for each

reference da/dN. Prior to marking the specimen, the load was dropped 30%. This drop in
maximum load is desirable during the proof tests, so that only small crack extension will
occur during the marking.

First, a through-crack specimen was fatigue range marked, as shown in Figure 28, then
a part-through flawed specimen, as shown in Figure 29. To allow for more accurate
measurements of the fracture surface, the photograph of the part-through crack fracture
surface was enlarged and the range marking bands were darkened, as shown in Figure 30.
One of the more noteworthy pieces of information attainable from this figure is the nearly
constant crack shape of 0.5. The shape varies from 0.493 t0 0.549 at the seven marker bands,
as shown in Figure 31, holding the nearly semicircular shape throughout the growth of the
crack.

5.4 Surface Crack J-R Curve

Resistance curves were generated for surface-cracked panels of Inconel 718 under
both load and displacement control. Because of the high toughness of this material
(approximately 130 ksivfin.), all specimens exhibited net section yielding before the onset
of instability. This situation has required the use of elastic-plastic analysis techniques to
establish the resistance curve, as discussed in the analysis section below.

5.4.1 Experimental Procedures

The load control experiments are defined as those where the applied load was
used as the feedback signal for the servo-hydraulic test machine. During these tests, a COD
gage was connected to either side of the EDM flaw, with a gage length of 0.200 in. Two
methods were attempted to monitor crack extension during loading: 1) changes in elastic
compliance during periodic unloading of the specimen; and 2) fatigue marker bands
introduced by periodic cyclic loading at a high R ratio. However, due to the small amount
of crack extension which occurred in the experiments, crack extension could not be reliably
detected with these techniques. Nevertheless, it was possible to generate a resistance curve
by testing multiple specimens. In each case, the specimen was loaded to produce different
amounts of crack extension as determined by post mortem analysis of the fracture surface.
Only small amounts of crack extension (< 0.008 in.) were obtained in any of these
load-controlled tests. Thus, the load-control tests do not adequately simulate the substantial
crack extension which can occur during the proof testing of actual SSME components. That
is, instability intervenes before much crack growth can be achieved.
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The other limiting type of test for the R-curve experiments is a
displacement-controlled test. During these tests, the specimen was driven to a set
displacement, allowing the load to increase as necessary to reach that displacement. In this
case, the COD gage was modified to obtain a gage length of 0.05 in. By conducting the test
in this manner, one can achieve virtually any displacement (and thus crack growth), since
the applied J decreases as the crack extends. For the displacement-controlled tests, larger
Aavalues were thus obtained than in the load-controlled tests. The actual SSME components
will instead see a loading somewhere between the two limiting cases of load and
displacement control.

5.4.2 Procedure Used to Analyze J-R Curve Data
Material Properties for Inconel 718. Application of the reference stress

approach forJ estimation requires development of a closed-form estimate for the constitutive
relationship. Analysis of load-displacement records from SwRI tensile tests of Inconel 718
yielded a relationship between stress and plastic strain of the form

o = 248 42" (19)

The elastic modulus is 29.69 x 10° ksi. The relationship between stress and total strain may
also be written in the general Ramberg-Osgood form, Eqn. 13, where g, = 0.006, 6, = 179.8
ksi,a=1,and n = 15.8.

Resistance Curve for Inconel 718. Resistance curve data for Inconel 718
obtained by Rocketdyne from relatively thick (B = 0.6 in.) compact tension (CT) specimens
were supplied to SWRI. Non-linear least squares regression techniques were used to obtain
best fits to the different empirical J-R curve models mentioned above. These empirical
models included four equations proposed by Orange [29], as well as a power law. The data
and some of the different fits are shown in Figure 32. None of the four models were clearly
inferior or superior in their ability to describe the data. While correlation coefficients varied
somewhat, all were around 0.900 - 0.940. The choice of a specific model is a matter of
mathematical convenience and personal judgement about which model captures the most
important features of the data. Note that the average value of the tearing slope was 3400
in.-Ibfin., which yields a value for the tearing modulus of only about 3.1 -- indicative of a
material with relatively low ductile tearing resistance.

The resistance curve for Inconel 718 in the surface-cracked configuration is not
necessarily the same as the CT resistance curve due to variations in stress state, as manifested
by both global geometry and crack geometry. It is possible to construct a J-R curve for
surface cracks in IN 718 from the limited number of tests conducted by SwRI and discussed
in Section 5.4.1. The primary difficulty lies in calculating the appropriate J value for a given
load-displacement record and increment of crack growth. Traditional schemes for
calculating J from load-deflection records of CT tests are well-established, but
corresponding schemes for complex geometries such as the surface flaw have not yet been
proven.
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Two approaches are available to estimate J for these tests. The first uses the
modified reference stress technique described above in Section 3.3. This scheme depends
only on the final load and crack length and not on the load-displacement history. The second
scheme is an "equivalent energy" approach utilized recently by McCabe [38]. He suggested
that J could be calculated as:

(Kz) (20)

J=E

where K, is a plasticity-modified stress intensity factor given by

A 1)
Ky =K, X‘

Here A, and A, are the total and elastic areas under the load-displacement curves and K, is
the linear-elastically determined stress intensity factor; see Figure 33.

The resulting estimated resistance curve estimates for the surface cracked
Inconel 718 are shown in Figure 34, along with the CT resistance curve. Note that the
modified reference stress and equivalent energy estimates gave similar values for J, typically
differing by about 10%. The primary exception to this agreement is the data point
corresponding to the displacement-controlled test with the greatest amount of crack
extension. This may reflect the uncertainty associated with J following large amounts of
crack advance with associated elastic unloading in the wake of the crack.

The resistance curve for surface cracks is clearly different from the resistance
curve for CT geometries. The initial slope (associated with the blunting line and early crack
growth) appears to be about the same, but the critical J value at which large amounts of
crack extension begin to occur is much higher. This indication of higher toughness is
consistent with a possible change from high constraint in the thick section CT tests to lower
constraint in the thin section, deeply cracked surface flaw tests. Other factors may also be
involved, including the loss of J-dominance (discussed further below). Similar behavior
was previously observed by White, Ritchie, and Parks [39]. Furthermore, there appears to
be a more gradual change in the slope of the surface crack resistance curve in the vicinity
of the "knee". Itis difficult toevaluate the possible changes in the tearing slope with specimen
geometry in this case, since only a few points are available to calculate this slope for the
surface crack tests. It is possible that the tearing modulus remains unchanged with the
specimen geometry, but it is also possible that the tearing modulus increases (perhaps due
also to loss of constraint) for the surface crack. Both phenomena have been reported in the
literature for other materials. Further tests may be needed to better characterize the tearing
slope, particularly for small amounts of crack extension.

In one sense, the uncertainties associated with J estimation for development of
the resistance curve are not fatal. Since analysis of crack growth involves comparison of
applied J and material resistance J, the important issue is to be consistent in the way the two
values are estimated. Absolute errors in the estimation scheme will, to some degree, cancel
each other out.
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6. DISCUSSION

It appears that the selection of an optimum proof test strategy, including specification
of the optimum number of proof cycles, will depend on several crucial factors. The nature
of local control (load vs. displacement) in the a¢tual component will be of great importance.
While traditional pressure testing is consistent with load control, the development of local
plasticity in net sections is likely to lead to some local intermediate control condition
analogous to Neuber control at the root of a notch. Identification of this control condition
and appropriate mathematical description are essential to development of the proper proof
teststrategy. This will require elastic-plastic stress analysis of the cracked component itself.
Consideration must also be given to the nature of the material resistance curve, including
the initial slope, the effective J;, value, and the tearing modulus; the initial crack size
distribution; and the magnitude of the applied loads/displacetnents. Therefore, selection of
an optimum proof test strategy may be specific to each component (considering geometry,
material, and design loads).

Several other important questions remain unanswered, however, and should be
addressed in further experimental and analytical research. What really happens during
unload/reload cycles? When does further ductile tearing or accelerated fatigue crack growth
occur or not occur? What is the relationship between fatigue and tearing? Does the resistance
curve actually regenerate itself consistently on subsequent proof cycles by moving along
the Ag axis? Or are there other changes in the shape or origin of the resistance curve? How
does the resistance curve change with specimen and crack geometry? A major change was
observed between the thick CT geometry and the thin plate surface crack geometry. Will
further changes occur from component to component? Do resistance J values change around
the perimeter of a surface crack? AppliedJ values are known to chan ge around the perimeter.
Must this be considered more rigorously? Are Jopp @NA J, 10000, CONSistent on each cycle?
Or does material hardening during the firstcycle cause changesin these values for subsequent
cycles? How does J change for extremely deep surface flaws, or for flaws which have
experienced large tearing?

Another set of questions and unresolved issues relates more directly to the validity of
J as the governing fracture parameter for large cracks and high applied stresses. The
J-integral accurately expresses the magnitude of the near-tip stresses and strains when the
Hutchinson-Rice-Rosengren (HRR) singular fields dominate the complete crack-tip fields
over distances large compared to crack-tip blunting and fracture process zones. But as
stresses and strains increase towards a fully plastic load state, constraint is lost and the HRR
fields no longer dominate. Parks and Wang [33] have recently studied this problem in some
depth for the three-dimensional surface crack. They found for two specific crack geometries
that HRR-dominance slowly deteriorated until applied stresses approached the flow stress,
when loss of dominance accelerated rapidly. Even the semi-circular flaw, which is ordinarily
associated with a high level of constraint, exhibited in-plane plastic flow deformation
patterns in the remaining ligament typical of single edge cracks under tension. No rigorous
criteria have yet been forwarded, however, to characterize loss of dominance for
three-dimensional configurations with respect to specific geometries or load levels.
Furthermore, it is not yet entirely clear what loss of dominance might mean in a pragmatic
sense to assessment of tendencies for ductile fracture of surface cracks. Although J may
lose its rigorous meaning as the characteristic parameter for the near-tip stress-strain field,
might it still be useful in an engineering sense to describe crack growth?
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Some of these questions introduce pragmatic issues related to the enginecering
application of the analysis method. The analytical model requires acceptably accurate J
estimates for cracks in actual hardware, and these geometrical crack/component
configurations are typically more complicated than the handbook-type solutions commonly
available. The reference stress method used in this study appears to hold considerable
promise for the efficient solution of more sophisticated problems, but further study is needed.
A second major input required by the analytical model is resistance curve data for crack
geometries of interest in materials of interest. In view of the geometry-dependence of the
J-R curve exhibited here, a library of CT resistance curves may be of limited value. There
are obvious practical limits on the number of original resistance curves which can be
generated for different geometries, however. Some advances in the theoretical
understanding of geometry effects on the resistance curve are needed.

Still other, perhaps more fundamental, questions remain to influence the practice of
MCPT in an actual production/service environment. How does crack growth during proof
testing influence subsequent fatigue crack growth during normal service? Will MCPT lead
to retardation - or acceleration - of crack growth when the component sees typical service
histories? How do resistance and applied J values change for irregularly shaped flaws in
inhomogeneous weldments? And are there other factors which may contribute to failure
during MCPT, such as the transformation of some material defect into a true crack after
several cycles?
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7. CONCLUSIONS AND RECOMMENDATIONS

Based on a survey of MCPT experiences, as well as experiments on
surface-cracked Inconel 718 panels, it is concluded that stable crack growth
during MCPT involves significant plastic deformation. In components, this
deformation occurs locally in uncracked ligaments associated with cracks which
are large compared to the component thickness.

Based on a statistical analysis of data compiled from SSME components, as well
as welded and cast Inconel 718 specimens, it is concluded that incipient crack
depths are log-normally distributed with a mean of 0.021 in. and a standard
deviation of 0.020 in.

Based on a newly developed analytical model of MCPT, combined with Monte
Carlo simulation techniques, it is concluded that the changes in the crack size
distribution during MCPT depend on the interaction between the number of proof
cycles applied, the nature of the J-R curve (both J;_ and tearing modulus), the
initial crack size distribution, the component boundary conditions (that is, load
control versus displacement control), and the magnitude of the applied load or
displacement.

In view of the above factors, the relative advantages and disadvantages of
single-cycle versus multi-cycle proof testing will, in theory, be specific to
component geometry, material, and fabrication technique.

Components whose boundary conditions, local to the cracked region, approach
load control during proof testing are more likely to be amenable to successful
MCPT, whereas those approaching displacement control should not be subjected
to MCPT, particularly where leaks cannot be tolerated.

Ultimately, the assessment of the relative merits of MCPT will require
elastic-plastic analysis of representative components containing representative
large cracks, since the actual loading is somewhere between load and
displacement control.

Further progress in understanding and optimizing MCPT depends on
clarification of the following fundamental issues:

a) the dependence/independence of the J-R curve on specimen (or
component) geometry, including crack size and shape;

b) the variance/invariance of the J-R curve for large unloading cycles;

c) The possibility of variations in applied J for surface flaws which are
extremely deep or which have experienced substantial ductile
tearing;

d) The interaction of applied and resistance J for mult-

degree-of-freedom crack configurations in which both Juwp and Jy
may change around the perimeter of the crack.



The engineering application of the analytical model developed herein for MCPT
depends on:

a) the availability of J estimates for surface-cracked components; and

b) the availability of J-R curve data for surface cracks in materials of
interest.

The next step in developing a MCPT strategy should involve a coordinated
experimental-analytical effort focusing on the experimental validation of the
assumptions of the present analytical model, with deviations between measured
and predicted behavior serving as the basis for model improvements.
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